Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(29): 34973-34982, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37442800

RESUMO

Li10GeP2S12 is a phosphosulfide solid electrolyte that exhibits exceptionally high Li-ion conductivity, reaching a conductivity above 10-3 S cm-1 at room temperature, rivaling that of liquid electrolytes. Herein, a method to produce glassy-ceramic Li10GeP2S12 via a single-step utilizing high-energy ball milling was developed and systematically studied. During the high energy milling process, the precursors experience three different stages, namely, the 'Vitrification zone' where the precursors undergo homogenization and amorphization, 'Intermediary zone' where Li3PS4 and Li4GeS4 are formed, and the 'Product stage' where the desired glassy-ceramic Li10GeP2S12 is formed after 520 min of milling. At room temperature, the as-milled sample achieved a high ionic conductivity of 1.07 × 10-3 S cm-1. It was determined via quantitative phase analyses (QPA) of transmission X-ray diffraction results that the as-milled Li10GeP2S12 possessed a high degree of amorphization (44.4 wt %). To further improve the crystallinity and ionic conductivity of the Li10GeP2S12, heat treatment of the as-milled sample was carried out. The optimal heat-treated Li10GeP2S12 is almost fully crystalline and possesses a room temperature ionic conductivity of 3.27 × 10-3 S cm-1, an over 200% increase compared to the glassy-ceramic Li10GeP2S12. These findings help provide previously lacking insights into the controllable preparation of Li10GeP2S12 material.

2.
Small ; 19(28): e2300850, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36974581

RESUMO

The structural and morphological changes of the Lithium superionic conductor Li10 GeP2 S12 , prepared via a widely used ball milling-heating method over a comprehensive heat treatment range (50 - 700 °C), are investigated. Based on the phase composition, the formation process can be distinctly separated into four zones: Educt, Intermediary, Formation, and Decomposition zone. It is found that instead of Li4 GeS4 -Li3 PS4 binary crystallization process, diversified intermediate phases, including GeS2 in different space groups, multiphasic lithium phosphosulfides (Lix Py Sz ), and cubic Li7 Ge3 PS12 phase, are involved additionally during the formation and decomposition of Li10 GeP2 S12 . Furthermore, the phase composition at temperatures around the transition temperatures of different formation zones shows a significant deviation. At 600 °C, Li10 GeP2 S12 is fully crystalline, while the sample decomposed to complex phases at 650 °C with 30 wt.% impurities, including 20 wt.% amorphous phases. These findings over such a wide temperature range are first reported and may help provide previously lacking insights into the formation and crystallinity control of Li10 GeP2 S12 .

3.
Small ; 18(21): e2200266, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35475572

RESUMO

High interfacial resistance and unstable interphase between cathode active materials (CAMs) and solid-state electrolytes (SSEs) in the composite cathode are two of the main challenges in current all-solid-state batteries (ASSBs). In this work, the all-phosphate-based LiFePO4 (LFP) and Li1.3 Al0.3 Ti1.7 (PO4 )3 (LATP) composite cathode is obtained by a co-firing technique. Benefiting from the densified structure and the formed redox-active Li3- x Fe2- x - y Tix Aly (PO4 )3 (LFTAP) interphase, the mixed ion- and electron-conductive LFP/LATP composite cathode facilitates the stable operation of bulk-type ASSBs in different voltage ranges with almost no capacity degradation upon cycling. Particularly, both the LFTAP interphase and LATP electrolyte can be activated. The cell cycled between 4.1 and 2.2 V achieves a high reversible capacity of 2.8 mAh cm-2 (36 µA cm-2 , 60 °C). Furthermore, it is demonstrated that the asymmetric charge/discharge behaviors of the cells are attributed to the existence of the electrochemically active LFTAP interphase, which results in more sluggish Li+ kinetics and more expansive LFTAP plateaus during discharge compared with that of charge. This work demonstrates a simple but effective strategy to stabilize the CAM/SSE interface in high mass loading ASSBs.

4.
ACS Appl Mater Interfaces ; 13(51): 61067-61077, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34910464

RESUMO

The fast Li+ transportation of "polymer-in-ceramic" electrolytes is highly dependent on the long-range Li+ migration pathways, which are determined by the structure and chemistry of the electrolytes. Besides, Li dendrite growth may be promoted in the soft polymer region due to the inhomogeneous electric field caused by the commonly low Li+ transference number of the polymer. Herein, a single-ion-conducting polymer electrolyte is infiltrated into intertwined Li1.3Al0.3Ti1.7(PO4)3 (LATP) nanofibers to construct free-standing electrolyte membranes. The composite electrolyte possesses a large electrochemical window exceeding 5 V, a high ionic conductivity of 0.31 mS cm-1 at ambient temperature, and an extraordinary Li+ transference number of 0.94. The hybrid electrolyte in the lithium symmetric cell shows stable Li plating/stripping up to 2000 h under 0.1 mA cm-2 without dendrite formation. The Li|hybrid electrolyte|LiFePO4 battery exhibits enhanced rate capability up to 1 C and a stable cycling performance with an initial discharge capacity of 131.8 mA h g-1 and a retention capacity of 122.7 mA h g-1 after 500 cycles at 0.5 C at ambient temperature. The improved electrochemical performance is attributed to the synergistic effects of the LATP nanofibers and the single-ion-conducting polymer. The fibrous fast ion conductors provide continuous ion transport channels, and the polymer improves the interfacial contact with the electrodes and helps to suppress the Li dendrites.

5.
ACS Appl Mater Interfaces ; 8(40): 26842-26850, 2016 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-27642769

RESUMO

The reactivity of mixtures of high voltage spinel cathode materials Li2NiMn3O8, Li2FeMn3O8, and LiCoMnO4 cosintered with Li1.5Al0.5Ti1.5(PO4)3 and Li6.6La3Zr1.6Ta0.4O12 electrolytes is studied by thermal analysis using X-ray-diffraction and differential thermoanalysis and thermogravimetry coupled with mass spectrometry. The results are compared with predicted decomposition reactions from first-principles calculations. Decomposition of the mixtures begins at 600 °C, significantly lower than the decomposition temperature of any component, especially the electrolytes. For the cathode + Li6.6La3Zr1.6Ta0.4O12 mixtures, lithium and oxygen from the electrolyte react with the cathodes to form highly stable Li2MnO3 and then decompose to form stable and often insulating phases such as La2Zr2O7, La2O3, La3TaO7, TiO2, and LaMnO3 which are likely to increase the interfacial impedance of a cathode composite. The decomposition reactions are identified with high fidelity by first-principles calculations. For the cathode + Li1.5Al0.5Ti1.5(PO4)3 mixtures, the Mn tends to oxidize to MnO2 or Mn2O3, supplying lithium to the electrolyte for the formation of Li3PO4 and metal phosphates such as AlPO4 and LiMPO4 (M = Mn, Ni). The results indicate that high temperature cosintering to form dense cathode composites between spinel cathodes and oxide electrolytes will produce high impedance interfacial products, complicating solid state battery manufacturing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...